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Abstract
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1 Introduction

Contests with asymmetric players and heterogeneous prizes are predominant. For example,

students of various intellectual levels compete for different grades, athletes of different abilities

compete for different medals, and employees with different experience compete for different

promotion opportunities. If we rank the prizes in a contest from the highest value to the lowest,

we obtain a nonincreasing sequence of prize values, to which we refer as the prize sequence. The

prize sequences in these contests have different shapes. For instance, in the 2016 U.S. Open

tennis tournament, the prize is $3.5 million for the winner, $1.75 million for a runner-up, and

$0.875 million for a semifinalist. A prize is roughly half of the value of the next higher prize.

In contrast, the prizes in the golf tournaments do not have the same property. For example, in

2016 U.S. Open golf tournament, the prizes are $1.8 million for the champion, $1.1 million for

the runner-up, and $0.68 million for the third place.

The shape of the prize sequence is especially important if the players have different abilities.

To see why, if the prize sequence is very concave, the difference between higher prizes is small

relative to that between lower prizes, which leads to less competition among the players with

stronger abilities. In contrast, if the prize sequence is very convex, the difference between lower

prizes is small relative to that between higher prizes, which leads to less competition among the

players with lower abilities.

In this paper, we consider a complete-information all-pay contest among players of distinct

constant marginal costs and two prizes of distinct values. This is the simplest setup to introduce

prize sequences of different concavity/convexity, measured in the ratio of the difference between

the two prizes to the difference between the lower prize and zero. We show that the contest

has a unique Nash equilibrium, and it is in mixed strategies. In addition, we provide a closed-

form characterization of the equilibrium payoffs and strategies, and computer programs to

numerically compute them.

This paper’s contribution is threefold. First, it shows equilibrium uniqueness. The unique-

ness is not obvious because multiple equilibria have been found in contests with identical players

(e.g. Baye et al. (1996)). In contrast, Siegel (2010) constructs a unique Nash equilibrium in

contests with identical prizes and general nonlinear cost functions. This paper shows that his

method, with non-trivial modifications, also applies to contests with asymmetric players and

two distinct prizes, and can be used to show the uniqueness of Nash equilibrium.

Second, this paper provides a closed-form characterization of equilibrium payoffs and strate-

gies in contests with two prizes of arbitrary values. As a result, it unifies the existing equilibrium

characterizations with specific prize sequences, and we can illustrate how the unique equilibrium

changes from one type to another as the prizes change. In addition, Xiao (2016) illustrates in

an example that a convex prize sequence can lead to an equilibrium in which a player mixes

over a non-interval set of bids. As a result of our closed-form characterization, we provide a

necessary and sufficient condition for this to happen.

Third, this paper can be used to test conjectures on variants of all-pay auctions and contests
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as well as on their design questions. If there is significant heterogeneity among either players

or prizes, it is typically difficult to characterize equilibria in these games. However, our closed-

form characterization and computer programs can be used to test conjectures and determine

what results to expect. Specifically, we numerically compute the optimal allocation of prizes

that maximizes the total expected bid of three asymmetric players. We find that the resulting

optimal prize sequence contains either a single prize or two equal prizes, which complements the

existing results by examining all the marginal cost profiles in a simplex, including the extreme

values of marginal costs that have been previously studied.

Literature There is a large literature on contests and, closely related, auctions. See Konrad

(2009) for a comprehensive survey. This paper is closely related to auctions and contests with

complete information. As in this paper, Nash equilibria in these setups are usually in mixed

strategies. A variety of prize structures are studied. For example, there is a large literature on

contests with a single prize (e.g., Baye et al. (1996), Che and Gale (1998)). Identical prizes are

considered by Clark and Riis (1998) and Siegel (2009, 2010). Arithmetic prize sequences – with

constant first-order differences – are studied by Bulow and Levin (2006) and González-Dı́az and

Siegel (2013).1 Xiao (2016) considers geometric prize sequences, with a constant ratio of two

consecutive prizes, and quadratic prize sequences, with constant second-order differences, where

both sequences are convex.

The main difference of this paper from the above is that we consider both concave and

convex prize sequences. Moreover, we consider how the concavity/convexity affects asymmetric

players. Barut and Kovenock (1998) study arbitrary prize sequences in contests among identical

players. This paper extends their setup to asymmetric players but restricts it to two distinct

prizes. Our findings are different from theirs. We find a unique equilibrium in contrast to their

multiple equilibria. In addition, the prize allocation affects the total expected bid in our setup

while the total expected bid is independent of prize allocations in their setup.2 Azmat and

Möller (2009) also consider symmetric players in a study of competing contests. Sela (2012)

studies sequential all-pay auctions with one object in each stage. Olszewski and Siegel (2016a)

study heterogeneous prizes and asymmetric players in large contests where the numbers of prizes

and players go to infinity. In contrast, this paper considers a similar contest but with a finite

number of prizes.

There is a literature on contests with asymmetric information, in contrast to the complete

information in this paper. For example, Rosen (1986) studies the role of convex prize sequences

in single-elimination tournaments, in which the players’ effort is not observable. Moldovanu

and Sela (2001) study the optimal allocation of prizes for ex ante symmetric players. All-pay

auctions between two ex ante asymmetric players are studied in various setups (e.g., Amann and

Leininger (1996), Lizzeri and Persico (2000), Siegel (2014), and Rentschler and Turocy (2016)).

1Bulow and Levin (2006) study labor markets in which firms compete for workers. Their model can be
transformed into a contest with arithmetic prize sequences.

2More precisely, for a fixed budget of prize money, any prize sequence whose lowest prize is zero maximizes
the total expected bid.
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However, we cannot study the effects of different prize structures on asymmetric players in those

setups because they have either a single prize or symmetric players. Parreiras and Rubinchik

(2010, 2015) study all-pay auctions of multiple objects and multiple ex ante asymmetric players.

In contrast to this paper, the equilibria in those auctions are in pure strategies.

The remainder of this paper is organized as follows. Section 2 introduces a contest model

among three players. Section 3 characterizes the equilibrium payoffs, and Section 4 characterizes

the equilibrium strategies. Section 5 generalizes the results to more than three players and

studies the optimal prize allocation for asymmetric players.

2 Model

For simpler notation, Sections 2 to 4 focus on a contest with three players 1, 2, 3. Then, Section

5 extends the results to more players. Each player i has a constant marginal cost of bid ci > 0,

and the marginal costs are distinct 0 < c1 < c2 < c3.3 Therefore, a bid si ≥ 0 incurs a cost

of cisi to player i. Player 1 is the strongest because it costs him the least to achieve the same

bid. The contest has two distinct prizes v1 > v2 > 0.4 Let c = (c1, c2, c3) be the cost sequence

and v = (v1, v2) be the prize sequence. Then, a contest is characterized by (c,v). The game

is of complete information, so (c,v) is commonly known. Let the first order differences of the

prizes be ∆1 = v1 − v2 and ∆2 = v2 − v3, where v3 = 0. Then, the prize sequence is convex if

∆1 > ∆2, linear if ∆1 = ∆2, and concave if ∆1 < ∆2. We use the ratio ∆1/∆2 to measure the

convexity of the prize sequence, and we say a sequence is more convex than another if the ratio

is larger.

Each player i chooses a bid si ≥ 0 simultaneously. The player with the highest bid receives

the highest prize v1; the player with the second-highest bid receives the second-highest prize v2;

and the others receive no prize. In the case of a tie, ranks are allocated randomly with equal

probabilities to tying players. For example, suppose s1 = s2 > s3, then with probability 1/2,

player 1 receives v1 and player 2 receives v2; and with probability 1/2, player 2 receives v1 and

player 1 receives v2. If s1 > s2 = s3, player 2 receives v2 with probability 1/2, and player 3

receives v2 with probability 1/2. If player i wins prize vk with bid si, his payoff is vk − cisi; if

a player chooses bid si ≥ 0 but wins no prize, his payoff is −cisi. All players are risk neutral.

We consider only Nash equilibrium throughout the paper.

3 Equilibrium Payoffs

We first introduce a sequence of definitions, and show in Proposition 1 that the equilibrium

payoffs can be constructed using the definitions. After that, Proposition 2 characterizes equi-

librium payoffs in closed form, and Corollary 1 discusses comparative statics of the equilibrium

payoffs with respect to the prize sequence.

3If some players have identical marginal costs, there may be multiple Nash equilibria, so our uniqueness result
does not apply. See, for instance, Baye et al. (1996).

4See Siegel (2010) for the case with v1 = v2.
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Figure 1: A Two-Player Contest

We use a c.d.f. Gi : [0,+∞) → [0, 1] to represent player i’s (mixed) strategy. The support

of Gi is the smallest closed set to which Gi assigns probability 1. Before the discussion of

equilibrium payoffs, we introduce some notation in a two-player contest and a three-player

contest.

First, consider a two-player contest in which the top two players 1 and 2 compete for prizes

v1 and v2. The two-player contest is isomorphic to a two-player complete-information all-pay

auction, and it is well-understood.5 The contest has a unique equilibrium, and it is in mixed

strategies.6 The equilibrium strategies are

G2
1(s) = c2s/(v1 − v2) (1)

G2
2(s) = 1− c1/c2 + c1s/(v1 − v2) (2)

for s ∈ [0, s̄2
1], where s̄2

1 = (v1−v2)/c2. Throughout the paper, superscripts indicate the number

of players in a contest. Figure 1 illustrates the equilibrium strategies if c1 = 1, c2 = 4 and

v1 = 4, v2 = 3. The equilibrium payoffs are

u2
i = v1 − (v1 − v2)ci/c2

for i = 1, 2.

Second, consider a three-player contest in which player 3 wins in every tie. This contest is

the same as the original one described in Section 2 except the tie-breaking rule. More precisely,

whenever player 3 has the same bid with another player, player 3 receives a higher prize than

the other player.7 We can extend G2
i for i = 1, 2 to a linear functions Gi : R → R such that

G1(s) = c2s/(v1− v2) and G2(s) = 1− c1/c2 + c1s/(v1− v2). Then, define a quadratic function

U3(·|G2
1, G

2
2) : R→ R such that

U3(s|G2
1, G

2
2) ≡ v1G1(s)G2(s) + v2[G1(s)(1−G2(s)) + (1−G1(s))G2(s)]− c3s (3)

5The contest is isomorphic to the complete-information all-pay auction with two players whose values are
(v1 − v2)/c1 and (v1 − v2)/c2. The two games have the same equilibrium.

6See, for instance, Che and Gale (2006) and Kaplan and Wettstein (2006).
7Without this tie-breaking rule, the interpretation of U3(·|G2

1, G
2
2) provided below still applies for s > 0 but

not for s = 0.

5



The function has an interpretation in the three-player contest in which player 3 wins in every

tie. Specifically, if the other players 1 and 2 use strategies G2
1 and G2

2, player 3’s expected

payoffs from choosing s is U3(s|G2
1, G

2
2), which is the expected value of his prizes v1G

2
1(s)G2

2(s)+

v2[G2
1(s)(1−G2

2(s)) + (1−G2
1(s))G2

2(s)] minus his cost c3s. Moreover, define

ŝ3 ≡ min arg max
s∈[0,s̄21]

U3(s|G2
1, G

2
2) (4)

which is player 3’s smallest best response against G2
1 and G2

2. The minimum in (4) is necessary

because multiple maximizers arise in two scenarios: First, if v1 − 2v2 > 0, the objective func-

tion U3(·|G2
1, G

2
2) is a U-shaped function, whose maximum over [0, s̄2

1] may be reached at both

boundaries of the interval. Second, if v1 − 2v2 = 0, U3(·|G2
1, G

2
2) reduces to a linear function,

whose maximum over [0, s̄2
1] may be reached at every point in the interval.

The expected payoff associated with the best response is

û3 ≡ U3(ŝ3|G2
1, G

2
2) (5)

and the corresponding expected value of prizes is

x3 ≡ v1G
2
1(ŝ3)G2

2(ŝ3) + v2[G2
1(ŝ3)(1−G2

2(ŝ3)) + (1−G2
1(ŝ3))G2

2(ŝ3)] = û3 + c3ŝ3 (6)

Now we go back to the two-player contest, in which players 1 and 2 compete for v1 and v2,

to define x1 and x2. Specifically, define

x1 ≡ v1G
2
2(ŝ3) + v2(1−G2

2(ŝ3)) (7)

where ŝ3 is defined as in (4). Given player 2’s equilibrium strategy G2
2 in this contest, x1 can

be interpreted as player 1’s expected value of prizes from choosing ŝ3.8 Similarly, given player

1’s strategy G2
1, player 2’s expected value of prizes from choosing ŝ3 is

x2 ≡ v1G
2
1(ŝ3) + v2(1−G2

1(ŝ3)) (8)

With this notation, we can introduce a sequence of definitions that are useful for characterizing

equilibrium payoffs.

Definitions

i) Let G2
1 and G2

2 be the equilibrium strategies in the two-player contest in which players 1

and 2 compete for prizes v1 and v2. Consider the three-player contest in which player 3 wins in

every tie. In this contest, define player 3’s value of winning as x3 = U3(ŝ3|G2
1, G

2
2) + c3ŝ3, which

is his expected value of prizes at his smallest best response ŝ3 against other players’ strategies

G2
1 and G2

2.

In the two-player contest with players 1 and 2 and prizes v1 and v2, for player i = 1 or

8This interpretation applies for ŝ3 > 0, but does not apply if ŝ3 = 0 because G2
2 has an atom at 0.
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2, define his value of winning xi as his expected value of prizes at ŝ3 given the other player’s

equilibrium strategy G2
j .

ii) The threshold T of the contest is the highest bid at which player 3’s payoff is zero if his

expected value of prizes is x3, his value of winning.

iii) Player i’s power wi is his payoff at the threshold if his expected value of prizes is xi, his

value of winning.

The following example illustrates the above definitions.

Example 1 Consider a contest of three players with marginal costs c1 = 1, c2 = 4, c3 = 7

and prizes v1 = 4, v2 = 3. First, we derive the values of winning, x1, x2, x3. Consider the

two-player contest in which players 1 and 2 compete for prizes v1 and v2. The equilibrium

strategies are G2
1(s) = 4s and G2

2(s) = 3/4 + s.9 Consider the three-player contest in which

player 3 wins in every tie. Suppose players 1 and 2 use strategies G2
1 and G2

2, then player 3

has a unique best response ŝ3 = 1/8, and the corresponding payoff is û3 = 19/8. According

to Definition i), players 1 and 2’s values of winning are defined in the two-player contest, and

they are x1 = 31/8 for player 1 and x2 = 7/2 for player 2 according to (7) and (8). Player 3’s

value of winning is defined in the three-player contest in which player 3 wins in every tie, and

it is x3 = û3 + c3ŝ3 = 13/4 according to (6). Then, following Definition ii), the threshold T

satisfies x3 − c3T = 0, so T = 13/28. Finally, according to Definition iii), player 1’s power is

w1 = x1 − c1T = 191/56, player 2’s power is w2 = x2 − c2T = 23/14, and player 3’s power is

w3 = x3 − c3T = 0.

In the contest in which 3 wins in every tie, we define the values of winning, which are the

only modification we need to generalize the equilibrium payoff characterization of Siegel (2009)

to our setup. To see this, if v1 = v2 = v, we have G2
1(ŝ3) = G2

2(ŝ3) = 1, so the value of winning

in Definition i) is xi = v for all i, and the definitions of threshold and power are the same as

those of Siegel. If v1 > v2, the definitions are different. In an equilibrium, a player may win

v1, v2 and 0 with positive probability, so his expected value of prizes may be between v1 and

0. The “value of winning” in Definition i) takes this into account. In Example 1, the values of

winning are x1 = 31/8, x2 = 29/8 and x3 = 13/4, all of which are between v1 = 4 and 0. In

addition, the value of xi coincides with player i’s expected value of prizes at the threshold T

given other players’ equilibrium strategies.

Using these definitions, the proposition below extends the payoff characterization of Siegel

(2009) to contests with heterogeneous prizes.10

Proposition 1 In every equilibrium of the contest, the expected payoff of every player equals

the maximum of his power and 0.

All proofs are relegated to the appendix.

To understand the idea behind the proof of Proposition 1, let an equilibrium (G∗1, G
∗
2, G

∗
3) be

given. Consider a contest with less competition by excluding player 3. In the resulting contest,

9See the end of the appendix for the calculation details in Example 1.
10Siegel (2009) also considers very general nonlinear cost functions.
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players 1 and 2 compete for v1 and v2. Because this new contest has less competition, if players

1 and 2 still use the equilibrium strategies G∗1 and G∗2, their payoffs would be higher than those

in the original equilibrium. Let Ḡ1 and Ḡ2 be strategies of players 1 and 2 such that their

payoffs in the new contest remain the same as in the original equilibrium, then these strategies

should be more “aggressive” than the strategies G∗1 and G∗2 in the original equilibrium.11 A key

step in the proof is that s̄∗3, the highest bid in player 3’s equilibrium strategy’s support, is a best

response against Ḡ1 and Ḡ2 in the original three-player contest.12 Intuitively, in the three-player

contest, if we replace players 1 and 2’s equilibrium strategies by the more aggressive strategies

Ḡ1 and Ḡ2, no bid can give player 3 a payoff higher than his payoff in the original equilibrium.

Moreover, it turns out that s̄∗3 can give player 3 his payoff in the original equilibrium, if 1 and

2’s strategies are Ḡ1 and Ḡ2. This means that s̄∗3 is a best response of player 3 against Ḡ1 and

Ḡ2 in the three-player contest.

Another property used in the proof is that G2
1 and G2

2, the equilibrium strategies in the

two-player contest defined in Definition i), are Ḡ1 and Ḡ2 with a horizontal shift. Because

of the horizontal shift, player 3 has the same expected value of prizes at his best response to

Ḡ1, Ḡ2 and at his best response to G2
1, G

2
2. Thus, player 3’s value of winning in Definition i)

is his expected value of prizes at s̄∗3 against others’ equilibrium strategies in the three-player

contest. This is also true for other players, i.e. xi in Definition i) is i’s expected value of prizes

at s̄∗3 against others’ equilibrium strategies. Therefore, to determine the equilibrium payoffs, we

only need to determine s̄∗3. It is a property of any equilibrium that the payoff of 3, the weakest

player, should be zero, so s̄∗3 must satisfy x3 − c3s̄
∗
3 = 0, which implies s̄∗3 = T .

Proposition 1 transforms the problem of equilibrium payoff characterization – a fixed point

problem – into a maximization problem of the quadratic function U3(·|G2
1, G

2
2). Therefore, we

can use the proposition to find the equilibrium payoffs in closed form. In particular, because

U3(·|G2
1, G

2
2) is a quadratic function, there are three possible cases for its maximum over the

interval [0, s̄2
1]. In Case I, the lower boundary 0 is a maximizer, which may not be the unique

maximizer. In Case II, the upper boundary s̄2
1 is the unique maximizer. In Case III, the

maximizer is an interior point of [0, s̄2
1]. Case III arises if U ′3(0|G2

1, G
2
2) > 0 and U ′3(s̄2

1|G2
1, G

2
2) <

0, which are equivalent to

c1 + c2 < c3 < 2c1∆2/∆1 + c2 − c1 (9)

If (9) does not hold, the maximizers are on the boundaries 0 and s̄2
1. Therefore, if (9) does not

hold, Case II happens if U3(0|G2
1, G

2
2) < U3(s̄2

1|G2
1, G

2
2), which is equivalent to

c1/(c3 − c2) > ∆1/∆2 (10)

If neither (9) nor (10) holds, Case I arises.

11This is formalized in Lemma 7.
12In Example 1, s̄∗3 is an interior point in the supports of Ḡ1 and Ḡ2. If s̄∗3 is at the lower boundary of the

supports, we consider 3’s best responses in the three-player contest in which 3 wins in every tie instead.
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Figure 2: Equilibrium Types

Figure 2 illustrates these conditions for fixed c1, c2.13 In the figure, Case I corresponds to the

area with large c3 and ∆1/∆2. Recall that ∆1/∆2 measures the prize sequence’s convexity, so

Case I arises with a very weak player 3 and a very convex prize sequence. Case II corresponds to

the area with large ∆1/∆2 but small c3, which means a not too weak player 3 but a very convex

prize sequence. Case III corresponds to large c3 but small ∆1/∆2, which means a very weak

player 3 but not very convex prize sequence. The solid curve corresponds to the upper bound

of c3 in (9), and the dashed curve corresponds to the upper bound of ∆1/∆2 in (10). Moreover,

the two curves intersect at (∆1/∆2, c3) = (1, c1 + c2). The proposition below characterizes the

equilibrium payoffs for each of the three cases.

Proposition 2 In every equilibrium, u∗3 = 0.

(Case I) If neither (9) nor (10) holds, the equilibrium payoffs are

u∗1 = v1

(
1− c1

c2

)
+ v2

(
c1

c2
− c1

c3
+
c1

c2

c1

c3

)
, u∗2 =

c3 − c2 + c1

c3
v2

(Case II) If (9) does not hold but (10) does, the equilibrium payoffs are

u∗i =

(
1− ci

c3

)
v1 for i = 1, 2

(Case III) If (9) holds, the equilibrium payoffs are

u∗1 = v1

(
1− c1

c2

)
+ v2

c1

c2
− c1

c3
û3, u∗2 = v2 −

c2

c3
û3

where û3 is defined in (5) and

û3 = v2

(
1− c1

c2

)
− c1c2

4
(v1 − 2v2)

[
c2 − c1

c1c2
+
c1 + c2

c1c2

v2

v1 − 2v2
− v1 − v2

v1 − 2v2

c3

c1c2

]2

(11)

We can verify that the equilibrium payoffs are continuous in the marginal costs and prizes.14

The proposition above implies that the equilibrium payoffs are unique. Recall that we use

13The curves are plotted for c1 = 1, c2 = 2.
14The conditions in Proposition 2 are sufficient but not necessary. For example, on the boundary between Case

I and II in Figure 2, the equilibrium payoffs can be expressed as in Case II (and in Case I), but (10) is violated.
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(v1 − v2)/(v2 − v3), the ratio of first order differences, to measure the convexity of the prize

sequence {v1, v2, v3} with v3 = 0. Similarly, we use (u∗1−u∗2)/(u∗2−u∗3) to measure the convexity

of the payoff sequence {u∗1, u∗2, u∗3}. The result below discusses the comparative statics of the

convexity of the payoff sequence with respect to the convexity of the prize sequence.

Corollary 1 Given c, (u∗1− u∗2)/(u∗2− u∗3) is nondecreasing in (v1− v2)/(v2− v3). That is, the

sequence of equilibrium payoffs is weakly more convex if the prize sequence is more convex.

4 Equilibrium Strategies

This section characterizes equilibrium strategies in closed form. We partition the parameter

space of (c,v) into four subsets. Propositions 3-6 discuss the subsets separately. For each

subset, the corresponding proposition characterizes a set of strategies in closed form and verifies

that the strategies are indeed an equilibrium and it is the unique equilibrium. Based on the

supports of the mixed strategies, we categorize the equilibrium into four cases: Case I, Case IIa,

Case IIb, and Case III, which correspond to the four subsets in the partition of the parameter

space. The equilibrium of Case I has payoffs as in Case I, the equilibrium of Case IIa or IIb has

payoffs as in Case II, and the equilibrium of Case III has payoffs as in Case III.

To our knowledge, the Case III equilibrium has not been discussed in the literature. For

example, Bulow and Levin (2006) illustrate the equilibrium of Case I or IIa if the prize sequence

is arithmetic. Siegel (2010) shows the equilibrium of Case IIa if the prizes are identical. Xiao

(2016) shows the equilibrium of Case IIb if the prize sequence is convex. By adding Case III,

this paper provides a complete list of equilibrium cases.

Proposition 3 (Case I) If ∆1/∆2 ≥ 1 and ∆1/∆2 ≥ c1/(c3 − c2) or if 2c1/(c1 + c3 − c2) ≤
∆1/∆2 ≤ 1, the equilibrium payoffs are as in Case I, and the strategies in the unique equilibrium

are

G∗1(s) =
c2s+ u∗2 − v2

v1 − v2
for s ∈

[
v2 − u∗2
c2

,
v1 − u∗2
c2

]

G∗2(s) =


c3s

v2
for s ∈

[
0,
v2 − u∗2
c2

]
c1s+ u∗1 − v2

v1 − v2
for s ∈

[
v2 − u∗2
c2

,
v1 − u∗2
c2

]
G∗3(s) =

c2s+ u∗2
v2

for s ∈
[
0,
v2 − u∗2
c2

]
The proofs of Propositions 3-6 are in the appendix. In each proof, we first show that an

algorithm constructs a unique set of strategies and derive their closed-form characterization. In

particular, we explain how to solve the strategies from an equation system and why the solution

is unique. Then, we verify that the constructed strategies are indeed an equilibrium. After that,

we show that every equilibrium must be one of the outcomes of the algorithm, which, combined

with the unique outcome of the algorithm, implies equilibrium uniqueness.
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Figure 3: Case I Equilibrium

s

1

0

G∗1

G∗2

G∗3

0.35 0.80
Figure 4: Case IIa Equilibrium

Intuitively, Case I arises if the first prize is much larger than the second, or if player 3’s cost

is much lower than 1 and 2’s. As a result, the top two players, 1 and 2, compete for the first

prize, while player 3 gives up the first prize and only compete for the second. More specifically,

there are two intervals [0,∆2(c2−c1)/(c2c3)] and [∆2(c2−c1)/(c2c3),∆2(c2−c1)/(c2c3)+∆1/c2].

Player 1 mixes over the higher interval, player 3 mixes over the lower one, and player 2 mixes

over both. For example, if v1 = 3, v2 = 1 and c1 = 1, c2 = 4, c3 = 7, the contest has a Case I

equilibrium. Figure 3 illustrates the equilibrium strategies.

Next, we discuss the Case IIa equilibrium. Define Ai = u∗i + (∆2)2/(∆1−∆2) for i = 1, 2, 3,

and s∗1 as the smallest s ≥ 0 such that15

(v1 − 2v2)
c3s

v2

u∗2 + c2s

v2
+ v2

(
c3s

v2
+
u∗2 + c2s

v2

)
− c1s = u∗1 (12)

In addition, if ∆1 6= ∆2, for i = 1, 2, 3 define

Fi(s) =
1

cis+Ai

√
×3
j=1 (cjs+Aj)

∆1 −∆2
− ∆2

∆1 −∆2
(13)

which is repeatedly used in the characterization of the Case IIa, IIb and III equilibria.16

Proposition 4 (Case IIa) If ∆1/∆2 > 1, ∆1/∆2 < c1/(c3 − c2) and

∂

∂s

(
(A1 + c1s)(A2 + c2s)

A3 + c3s

)∣∣∣∣
s∗1

≥ 0 (14)

or if ∆1/∆2 < 1 and c3 ≤ c1 + c2, the equilibrium payoffs are as in Case II and the strategies

15If v1 = 2v2, the equation below reduces to a linear equation, which may have a continuum of solutions.
16Under the conditions of Propositions 4-6, Fi(s) is a real number. See, for example, the discussion below (28).
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in the unique equilibrium are

G∗1(s) = F1(s) for s ∈ [s∗1, v1/c3]

G∗2(s) =

{
sc3/v2 for s ∈ [0, s∗1]

F2(s) for s ∈ [s∗1, v1/c3]

G∗3(s) =

{
sc2/v2 + (1− c2/c3) v1/v2 for s ∈ [0, s∗1]

F3(s) for s ∈ [s∗1, v1/c3]

If ∆1/∆2 = 1 and c3 < c1 + c2, the strategies are the same except that G∗i (s) = [
∑3

j=1(u∗j +

cjs)− 2(u∗i + cis)]/(2v2) for i = 1, 2, 3 and for s ∈ [s∗1, v1/c3].

Case IIa arises if the two prizes are similar or if the bottom two players, 2 and 3, have

similar costs. Intuitively, the similarity in prizes and players leads to similarity in the highest

bid. Specifically, in an equilibrium of Case IIa, all three strategies have interval supports, and

their supports share the same upper boundary. For example, if v1 = 4, v2 = 3 and c1 = 2, c2 =

4, c3 = 5, the contest has a Case IIa equilibrium. Figure 4 illustrates the equilibrium strategies.

Proposition 5 (Case III) If c1 + c2 < c3 < c2 − c1 + 2c2∆2/∆1, the equilibrium payoffs are

as in Case III, and the strategies in the unique equilibrium are

G∗1 (s) =

{
F1(s) for s ∈ [s∗1, s̄

∗
3]

(c2s+ u∗2 − v2)/∆1 for s ∈ [s̄∗3, s̄
∗
1]

G∗2 (s) =


sc3/v2 for s ∈ [0, s∗1]

F2(s) for s ∈ [s∗1, s̄
∗
3]

(sc1 + u∗1 − v2)/∆1 for s ∈ [s̄∗3, s̄
∗
1]

G∗3 (s) =

{
(sc2 + u∗2)/v2 for s ∈ [0, s∗1]

F3(s) for s ∈ [s∗1, s̄
∗
3]

where s∗1 is defined before Proposition 4, s̄∗1 = (v1 − u∗1)/c1 and s̄∗3 = T .

Intuitively, this case arises if player 3’s cost takes intermediate values, between c1 + c2 and

c2− c1 + 2c2∆2/∆1, and if the prize sequence is not very convex, i.e., ∆2/∆1 is bounded below.

The three players compete in three bid intervals: over the high interval [s̄∗3, s̄
∗
1], the top two

players 1 and 2 compete for the first prize; over the low interval [0, s∗1], the bottom two players 2

and 3 compete for the second prize, and over the intermediate interval [s∗1, s̄
∗
3], the three players

compete for both prizes. The following example illustrates an equilibrium of Case III.

Example 1 (continued) Consider the contest in Example 1. The equilibrium payoffs are

u∗1 = 191/56 for player 1, u∗2 = 99/56 for player 2, and u∗3 = 0 for player 3. All players’ mixed

strategies have interval supports. The supports are [0, 13/28] for player 3, [0, 33/56] for player

2, and [(67−5
√

37)/112, 33/56] for player 1. Figure 5 illustrates the equilibrium strategies. Two

properties are worth mentioning: First, recall that the threshold of this contest is T = 13/28,

12



s

1

0

G∗1G∗2

G∗3

s∗1 s̄∗3 s̄∗1
Figure 5: Case III Equilibrium

s

1

0

G∗1

G∗2

G∗3

s∗1 ŝ3 s̄∗1
Figure 6: Case IIb Equilibrium

which is exactly the highest bid in the support of 3’s equilibrium strategy. Second, we can verify

that player i’s “value of winning”, xi, equals the expected value of his prize at the threshold

given the others’ equilibrium strategies. Hence, player i’s equilibrium payoff is u∗i = xi − ciT .17

Proposition 6 (Case IIb) If we have ∆1/∆2 > 1, ∆1/∆2 < c1/(c3 − c2) but not (14), the

equilibrium payoffs are as in Case II, and the strategies in the unique equilibrium are

G∗1 (s) =


c2s+ u∗2 − v2G

∗
3(s∗1)

(∆1 −∆2)G∗3(s∗1) + v2
for s ∈ [s∗1, ŝ3]

F1(s) for s ∈ [ŝ3, s̄
∗
1]

G∗2 (s) =


sc3/v2 for s ∈ [0, s∗1]
c1s+ u∗1 − v2G

∗
3(s∗1)

(∆1 −∆2)G∗3(s∗1) + v2
for s ∈ [s∗1, ŝ3]

F2(s) for s ∈ [ŝ3, s̄
∗
1]

G∗3 (s) =


sc2/v2 + (1− c2/c3) v1/v2 for s ∈ [0, s∗1]

s∗1c2/v2 + (1− c2/c3) v1/v2 for s ∈ [s∗1, ŝ3]

F3(s) for s ∈ [ŝ3, s̄
∗
1]

where ŝ3 is the smallest s ≥ s∗1 such that U3(s|F1, F2) = u∗3.

Intuitively, this case arises when the bottom two players 2 and 3 have similar costs, and

if the prize sequence is convex. The three players compete in three bid intervals as in Case

III. The difference is that, over the high interval [ŝ∗3, s̄
∗
1], the three players compete for both

prizes, which is a result of players 2 and 3’s similar costs. Proposition 6 provides a necessary

and sufficient condition on the convexity of the prize sequence for equilibrium strategies with

non-interval supports. This complements Siegel’s (2010) result that, in contests with identical

prizes, linear cost functions result in equilibrium strategies with interval supports, but nonlinear

cost functions may not. The following example illustrates an equilibrium of Case IIb.

Example 2 Consider a contest of three players with marginal costs c1 = 4, c2 = 6, c3 = 7 and

prizes v1 = 4, v2 = 1. The equilibrium payoffs are u∗1 = 1.71 for player 1, u∗2 = 0.57 for player

17Both properties are true in general. We can verify the properties using the closed-form characterization of
equilibrium strategies.
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2, and zero for player 3. Player 1 mixes over interval [0.05, 0.57], player 2 mixes over [0, 0.57],

and player 3 mixes over [0, 0.05] ∪ [0.34, 0.57]. The equilibrium strategies are18

G∗1 (s) =

{
2.16s− 0.11 for s ∈ [0.05, 0.34]√

0.5(84s+ 15)(14s+ 1)/(56s+ 31)− 0.5 for s ∈ [0.34, 0.57]

G∗2 (s) =


7s for s ∈ [0, 0.05]

1.44s+ 0.30 for s ∈ [0.05, 0.34]√
0.5(56s+ 31)(14s+ 1)/(84s+ 15)− 0.5 for s ∈ [0.34, 0.57]

G∗3 (s) =


6s+ 0.57 for s ∈ [0, 0.05]

0.89 for s ∈ [0.05, 0.34]√
0.5(84s+ 15)(56s+ 31)/(14s+ 1)− 0.5 for s ∈ [0.34, 0.57]

Given G∗1 and G∗2, player 3’s payoff from choosing s ∈ (0.05, 0.34) is a U-shaped quadratic curve

passing 0 at the boundaries of the interval, so the payoff is lower than 0. Figure 6 illustrates

the equilibrium strategies.

Combining Propositions 3-6, we have the following result.

Corollary 2 The contest has a unique Nash equilibrium.

According to Propositions 3-6, the unique equilibrium can be one of four cases. These propo-

sitions unify the existing equilibrium characterizations for different specific prize sequences. In

addition, we can illustrate how the different equilibrium cases relate to each other. More pre-

cisely, we consider how the unique equilibrium changes from one case to another as the prize

sequence becomes more convex.

Proposition 7 If c3 > c1 + c2, the equilibrium is of Case IIa for ∆1/∆2 = 0; Case III for

∆1/∆2 ∈ (0, 2c1/(c1 + c3 − c2)); and Case I for ∆1/∆2 > 2c1/(c1 + c3 − c2).

If c3 ≤ c1 + c2, there exists λ ∈ (1, c1/(c3 − c2)) such that the equilibrium is of Case IIa for

∆1/∆2 < λ, Case IIb for ∆1/∆2 ∈ (λ, c1/(c3 − c2)); and Case I for ∆1/∆2 ≥ c1/(c3 − c2).

The transition is demonstrated in Figure 7. In the figure, we use the supports of the

equilibrium strategies to demonstrate different cases. If ∆1/∆2 is small, the equilibrium is

of Case II; if ∆1/∆2 is large enough, the equilibrium is of Case I. How does the equilibrium

transform from Case IIa to Case I as ∆1/∆2 increases? If c3 > c1 + c2, the equilibrium changes

from Case IIa to Case IIb then to Case I, which is illustrated at the upper half of the figure.

If c3 ≤ c1 + c2, the equilibrium changes from Case IIa to Case III then to Case I, which is

illustrated at the lower half of the figure.

We show above the unique equilibrium in contests with linear cost functions and two distinct

prizes. We describe below two potential extensions and what we know about them. First, the

method in this paper can be extended to show equilibrium uniqueness if the cost functions are

18The slopes and intercepts of the linear parts of the strategies are rounded to two decimal places.
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Figure 7: Supports of Mixed Strategies

nonlinear and have ordered marginal cost functions. However, the equilibrium generally has no

closed-form characterization. Another extension is to consider more than two positive prizes.

However, equilibrium strategies generally do not have a closed-form characterization either.19

5 Application and Extension

5.1 Revenue Maximizing Prizes

Consider a contest organizer with a fixed budget whose value is normalized to 1. She is risk

neutral and wants to maximize the revenue – the total expected bid – by splitting the budget

into v1 and v2 such that v1, v2 ≥ 0 and v1 + v2 = 1. Because there are three players, it is

not optimal to have three or more prizes. Because of the closed-form characterization of the

equilibrium strategies, we can numerically calculate the expected bid given each prize allocation.

Therefore, we can find the optimal prize allocation (v∗1, v
∗
2) given any cost profile c = (c1, c2, c3).

In Figure 8, the triangle on the right illustrates the optimal prize allocation for c = (c1, c2, c3)

satisfies c1 + c2 + c3 = 1 and 0 ≤ c1 ≤ c2 ≤ c3. For a given c1, the dashed line represents c

such that c2 + c3 = 1− c1. Moreover, moving up along the dashed line leads to higher values of

(c3 − c2)/(c2 − c1). Therefore, we have two key observations from the figure:

• The optimal allocation (v∗1, v
∗
2) is either (1/2, 1/2) or (1, 0).

• For a given c1, there exists φ ∈ (0,∞) such that the optimal allocation is (v∗1, v
∗
2) =

(1/2, 1/2) if (c3 − c2)/(c2 − c1) < φ, and (v∗1, v
∗
2) = (1, 0) if (c3 − c2)/(c2 − c1) > φ.

This means that a single prize – the most convex prize sequence – maximizes the total expected

bid in a three-player contest if the top two players are similar, and two equal prizes – the most

19See Xiao (2016) for examples of such equilibria.
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Figure 8: Performance Maximizing Prizes

concave prize sequence – maximize the total expected bid if the bottom two players are similar.

Moreover, according to Corollary 1, if the top two players are similar, the revenue maximizing

prizes result in the most convex equilibrium payoff sequence; if the bottom two players are

similar, the revenue maximizing prizes result in the least convex equilibrium payoff sequence.

By renaming the players, the above results extend to the entire simplex in which c = (c1, c2, c3)

satisfies c1 + c2 + c3 = 1 and ci ≥ 0 for i = 1, 2, 3. In Figure 8 the triangle on the left illustrates

the optimal prize allocation over the entire simplex.20

There is a big literature on contests with multiple prizes (see Sisak (2009) for a survey),

and multiple prizes are studied in various scenarios, e.g. contests with participation constraints

(Megidish and Sela (2013)). Our analysis above focuses on how the asymmetry of players’ costs

affects the optimal allocation of prizes. In a different setup with ex ante symmetric players,

Moldovanu and Sela (2001) study how the convexity of the players’ cost function affects the

optimal prize allocation. They show that a single prize is optimal if the players have concave

or linear cost functions, and multiple prizes are optimal if they have concave cost functions. In

contrast, our results suggest that in the case of complete information, multiple prizes can be

optimal even if the cost functions are linear.

The optimality of multiple prizes is also demonstrated in various limiting cases. For example,

Szymanski and Valletti (2005) and Xiao (2016) consider contests in which the strongest player’s

marginal cost converges to zero. Cohen and Sela (2008) study an all-pay auction in which one

player values the second prize slightly higher than the other players. Our findings complement

those results by examining all the cost profiles in the simplex, including the extreme values of

marginal costs.

20In a zero-measure subset of the simplex, c contains identical marginal costs. For those values of c, our method
still constructs an equilibrium, which we use in the simulation. However, there may be other equilibria.
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5.2 More Than Three Players

Consider the same contest described in Section 2 except that there are more than three players:

1, 2, ..., n, where n ≥ 3. They have constant marginal costs of bid, which satisfy 0 < cn1 < cn2 <

... < cnn. The following result extends the closed form characterization of equilibrium payoffs

and strategies to the n-player contest.

Proposition 8 The n-player contest has a unique equilibrium, in which players 1, 2, 3’s payoffs

and strategies are the same as in the three-player contest, the others choose s = 0 with probability

1 and receive a payoff of zero.

Next, we consider the revenue maximizing prizes for n > 3 players. Olszewski and Siegel

(2016b) examine revenue maximizing prizes in large contests in which the number of players

goes to infinity. They find that one prize is optimal if the limiting distribution of the players’

constant marginal costs has a continuous and strictly positive density.21 Our finding is different

from theirs. Specifically, for n > 6, consider an n-player contest with cn1 = 1/n, cn2 = 1/2− 2/n

and cni = 1/2+(i−2)/n for i ≥ 3. Note that 0 < cn1 < cn2 < ... < cnn and cn1 + cn2 + cn3 = 1. Given

one or two prizes, players 4, ..., n choose zero bid with probability 1, so the total expected bid

in this contest is the same as the three-player contest among players 1, 2 and 3. Notice that

limn→+∞ c
n
3 − cn2 = 0, so our observations above suggest that, for a large enough n, two equal

prizes result in higher expected bid than one prize in the n-player contests. The main reason

for the difference is that, if n→ +∞, the limiting distribution of the marginal costs is F (c) = 0

for c ∈ [0, 1/2] and F (c) = c − 1/2 for c ∈ [1/2, 3/2]. Its density function over (0, 1/2) is 0,

which is excluded by Olszewski and Siegel (2016b).
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González-Dı́az, J. and Siegel, R. (2013), “Matching and Price Competition: Beyond Symmetric

Linear Costs”, International Journal of Game Theory, 42, pp. 835-844. [3]

Kaplan, T. R. and Wettsstein, D. (2006), “Caps on Political Lobbying: Comment”, American

Economic Review, 96, pp. 1351-1354. [5]

Konrad, K. A. (2009), Strategy and Dynamics in Contests, Oxford University Press. [3]

Lizzeri, A. and Persico, N. (2000), “Uniqueness and Existence of Equilibrium in Auctions with

a Reserve Price”, Games and Economic Behavior, 30, pp. 83-114. [3]

Megidish, R. and Sela, A. (2013), “Allocation of Prizes in Contests with Participation Con-

straints”, Journal of Economics and Management Strategy, 22, pp. 713-727. [16]

Moldovanu, B. and Sela, A. (2001), “The Optimal Allocation of Prizes in Contests,”American

Economic Review, 91, pp. 542-558. [3 and 16]

Olszewski, W. and Siegel, R. (2016a), “Large Contests”, Econometrica, 84, pp. 835-854. [3]

Olszewski, W. and Siegel, R. (2016b), “Effort-Maximizing Contests”, Mimeo, Northwestern

University. [17]

Parreiras, S. O. and Rubinchik, A. (2010), “Contests with Three or More Heterogeneous

Agents,” Games and Economic Behavior, 68, pp. 703–715. [4]

Parreiras, S. O. and Rubinchik, A. (2015), “Group Composition in Contest,” Mimeo. [4]

Rentschler, L. and Turocy, T. L. (2016), “Two-Bidder All-Pay Auctions with Interdependent

Valuations, Including the Highly Competitive Case”, Journal of Economic Theory, 163, pp.

435-466. [3]

Rosen, S. (1986), “Prizes and Incentives in Elimination Tournaments”, American Economic

Review, 76, pp. 701-715. [3]

Sela, A. (2012), “Sequential Two-Prize Contests”, Economic Theory, 51, pp. 383-395. [3]

Siegel, R. (2009), “All-Pay Contests”, Econometrica, 77, pp. 71-92. [3, 7, and 20]

Siegel, R. (2010), “Asymmetric Contests with Conditional Investments”, American Economic

Review, 100, pp. 2230-2260. [2, 3, 4, 10, 13, and 25]

18



Siegel, R. (2014), “Asymmetric All-Pay Auctions with Interdependent Valuations”, Journal of

Economic Theory, 153, pp. 684-702. [3]

Sisak, D. (2009), “Multiple-Prize Contests - the Optimal Allocation of Prizes”, Journal of

Economic Surveys, 23, pp. 82-114. [16]

Szymanski, S. and Valletti, T. (2005), “Incentive Effects of Second Prizes”, European Journal

of Political Economy, 21, pp. 467-481. [16]

Xiao, J. (2016), “Asymmetric All-Pay Contests with Heterogeneous Prizes”, Journal of Eco-

nomic Theory, 163, pp. 178-221. [2, 3, 10, 15, 16, and 19]

Appendix

We first introduce several known equilibrium properties in Lemmas 1 to 4, then some additional

properties in Lemmas 5 to 7. See Step 2 in Appendix A of Bulow and Levin (2006) for Lemma

1 and Xiao (2016) for Lemmas 2-4. These papers consider different prize sequences, but their

proofs apply here. After that, we use the equilibrium properties to prove Proposition 1.

It is easy to see that there is no equilibrium in pure strategies.22 For an equilibrium with

strategies G∗1, ..., G
∗
n in the n-player contest, let s∗i and s̄∗i be the minimal and maximum bids

in the support of G∗i .

Lemma 1 (No Aggregate Gaps) In every equilibrium, if s ∈ [0,max(s̄∗1, ..., s̄
∗
n)], there are at

least two players whose equilibrium strategies’ supports contain s.

As a result, in any equilibrium, if s is in the support of one player’s strategy, and s′ in the

support of another player’s strategy, then any bid between s and s′ is in the support of some

player’s strategy.

Lemma 2 (Participation) In every equilibrium, player i > 3 assigns probability 1 to s = 0.

The above lemma implies that the top three players, whose costs are the lowest, choose

positive bids to compete for the two prizes. The other players’ costs are too high and they give

up by choosing s = 0.

Lemma 3 (Nested Gaps) In every equilibrium, if s ∈ (s∗i , s̄
∗
i ) is not in the support of G∗i ,

then s is not in the support of G∗j for any j > i.

If s ∈ (s∗i , s̄
∗
i ) is not in the support of G∗i , it means that, due to the competition from other

players, s is not a best response for player i. Then, Lemma 3 implies that for the players weaker

than i, the bid s is not a best response either.

22See, for instance, Bulow and Levin (2006).
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Lemma 4 (Stochastic Dominance) In every equilibrium, if i < j, then G∗i (s) ≤ G∗j (s) for

s ≥ 0.

If i < j, player i is stronger than j because i has a lower marginal cost. Then, the lemma

means the equilibrium bids of a stronger player are higher, in terms of the first order stochastic

dominance, than those of a weaker player.

Lemma 5 Suppose a player has an atom at bid s in an equilibrium, that is, he chooses s with

positive probability. Then, he receives no prize by choosing s.

Proof. We first show that, if two or more players have an atom at bid s in an equilibrium,

all the players who have an atom at s lose with certainty.23 Let us prove it by contradiction.

Suppose that two players, i and j, have an atom at bid s in an equilibrium, and suppose that

player i wins a prize with positive probability by choosing s. Since the tie is broken in such

a way that everyone involved wins with positive probability, player j also wins a prize with

positive probability by choosing s. In addition, the tie breaking rule ensures that player i loses

with positive probability by choosing s, so he does not win the highest prize with probability

1. In contrast, if player j increases his bid slightly above s, his cost is almost the same but his

expected winnings would have a discontinuous increase. This is because he no longer needs to

share any prize with player i. This is a deviation for player j, which is a contradiction.

Next, using the above claim, we prove the lemma in two steps. First, suppose two players

have an atom at bid s in the equilibrium, then the above claim implies that both of them must

lose with certainty by choosing s. Second, suppose only player i has an atom at s, and suppose

he wins a prize with positive probability. On the one hand, if all other players have no best

response in (s−ε, s) for some ε > 0, player i would benefit from lowering the atom to s−ε. This

is a contradiction. On the other hand, suppose another player j has a sequence of best responses

converging to s from below. Compared to such a best response close to s, a bid slightly above

s imposes an almost identical cost on player j, but the resulting expected winnings would have

a discontinuous increase because of player i’s atom at s. This is also a contradiction. In sum,

player i loses with certainty by choosing bid s, which completes the proof.

According to the lemma, a player never has an atom at s > 0 in an equilibrium, otherwise

he receives a negative expected payoff. Therefore, the possible atoms in an equilibrium must

be at s = 0. The lemma below shows that only the weaker players, 3, 4, ..., n, bid zero with

positive probability.

Lemma 6 In every equilibrium, players 1 and 2’s strategies G∗1 and G∗2 have no atoms; player

3’s strategy G∗3 has an atom at s = 0; and player i ≥ 4 assigns probability 1 to s = 0.

Proof. We prove this in three steps. First, Lemma 2 implies that player i ≥ 4 assigns probability

1 to s = 0. As a result, given others’ equilibrium strategies, a player’s payoff at a positive bid

does not depend on the strategies of i ≥ 4.

23This claim is referred to as the Tie Lemma by Siegel (2009).
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Second, G∗1 and G∗2 have no atoms. Suppose otherwise that in an equilibrium, G∗1 has an

atom. Then, Lemma 5 implies that player 1’s expected equilibrium payoff u∗1 = 0. Recall

that s̄∗3 is the highest bid in the support of G∗3. If s̄∗3 = 0, player 1 could receive a positive

expected payoff by deviating to s = 0. Therefore, s̄∗3 > 0. Due to Lemma 5, s̄∗3 > 0 cannot

be an atom. Hence, given others’ equilibrium strategies, player 1’s expected payoff at s̄∗3 is

u∗1 = U1(s̄∗3|G∗2, G∗3), where

Ui(s|Gj , Gk) = v1Gj(s)Gk(s) + v2[Gj(s)(1−Gk(s)) + (1−Gj(s))Gk(s)]− cis

Notice that player 1’s payoff at s̄∗3 is independent of G∗i for i ≥ 4, which is due to the first step.

Similarly, u∗3 = U3(s̄∗3|G∗2, G∗1). In addition, because G∗3(s̄∗3) = 1 ≥ G∗1(s̄∗3) and c3s̄
∗
3 > c1s̄

∗
3, we

have U1(s̄∗3|G∗2, G∗3) > U3(s̄∗3|G∗2, G∗1). As a result, u∗1 > u∗3 ≥ 0, which contradicts u∗1 = 0.

Third, G∗3 has an atom at s = 0. Suppose otherwise that G∗3(0) = 0. Recall that s∗i is the

smallest bid in the support of G∗i . Then, if min(s∗1, s
∗
2) > 0, the interval (0,min(s∗1, s

∗
2)) receives

zero probability from G∗i for i 6= 3. This contradicts Lemma 1, the property of “No Aggregate

Gaps”. Therefore, min(s∗1, s
∗
2) = 0. Without loss of generality, assume s∗2 = 0. Recall that

G∗1(0) = 0 according to the second step. Then, the assumption G∗3(0) = 0 implies that, given

others’ equilibrium strategies, player 2’s expected payoff at s∗2 = 0 is zero. Therefore, u∗2 = 0,

which leads to a contradiction by the same argument in the second step. Hence, G∗3 has an

atom at s = 0.

Given payoffs u∗1 and u∗2 in an equilibrium, let Ḡ1 be a mixed strategy such that

v1Ḡ1(s) + v2(1− Ḡ1(s))− c2s = u∗2 (15)

and Ḡ2(s) a mixed strategy such that

v1Ḡ2(s) + v2(1− Ḡ2(s))− c1s = u∗1 (16)

Suppose player 3 is absent, Ḡi for i = 1, 2 is the strategy of player i such that the other player

j’s payoff is u∗j by choosing s. In an equilibrium, (s∗1, s̄
∗
3) may be empty.24 If the interval is

not empty, the following result compares Ḡi with equilibrium strategy G∗i , and shows that Ḡi

is “more aggressive” than G∗i in terms of first order stochastic dominance.

Lemma 7 In every equilibrium, for any s ∈ (s∗1, s̄
∗
3), Ḡ1(s) < G∗1(s) and Ḡ2(s) < G∗2(s).

Proof. According to Lemma 6, any player i ≥ 4 chooses zero with probability 1. As a result,

Lemma 1, the property of “No Aggregate Gaps”, implies that at least two of players 1, 2, 3’s

strategies’ supports contain s ∈ (s∗1, s̄
∗
3), and Lemma 3, the property of “Nested Gaps”, implies

24See the Case I equilibrium in Proposition 3.
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that 1 and 2 must be among these players. Therefore,

U1(s|G∗2, G∗3) = u∗1 (17)

U2(s|G∗1, G∗3) = u∗2 (18)

By the definition of s̄∗3, we have G∗3(s) < 1 for s < s̄∗3. Notice that (17) and (18) implicitly

define G∗1(s) and G∗2(s) as strictly increasing functions of G∗3(s). Then, if we replace G∗3(s)

with a higher value 1, G∗1(s) and G∗2(s) implicitly defined in (17) and (18) should be lower.

We can verify that (17) and (18) become (16) and (15) if we replace G∗3(s) with 1. Therefore,

Ḡ1(s) < G∗1(s) and Ḡ2(s) < G∗2(s).

Proof of Proposition 1. We claim that in every equilibrium, given others’ equilibrium

strategies, player 3’s expected value of prizes at s̄∗3 is x3 as in Definition i). We prove the claim

in two steps.

First, in every equilibrium, s̄∗3 = inf arg maxs∈[s1,s̄1] U3(s|Ḡ1, Ḡ2), where Ḡ1(s) and Ḡ2(s)

are defined in Lemma 7 and s1, s̄1 solve Ḡ1(s1) = 0 and Ḡ1(s̄1) = 1. To see why, notice that

Ḡi(s) = G∗i (s) for any s ≥ s̄∗3 and i = 1, 2, so the definition of equilibrium implies

u∗3 = U3(s̄∗3|Ḡ1, Ḡ2) ≥ U3(s|Ḡ1, Ḡ2) (19)

for any s ≥ s̄∗3. Therefore, inf arg maxs∈[s1,s̄1] U3(s|Ḡ1, Ḡ2) ≤ s̄∗3. As a result, it remains to be

shown that any s ∈ [s1, s̄
∗
3) does not maximize U3(s|Ḡ1, Ḡ2).

Lemma 7 implies that if Ḡ1(s) = 0, then G∗1(s) > 0. Therefore, s∗1 < s1. The lemma

also implies U3(s|Ḡ1, Ḡ2) < U3(s|G∗1, G∗2) ≤ u∗3 for s ∈ (s∗1, s̄
∗
3). Because [s1, s̄

∗
3) is a subset of

(s∗1, s̄
∗
3), we have U3(s|Ḡ1, Ḡ2) < u∗3 for s ∈ [s1, s̄

∗
3). Recall that u∗3 = U3(s̄∗3|Ḡ1, Ḡ2) in (19),

so U3(s|Ḡ1, Ḡ2) < U3(s̄∗3|Ḡ1, Ḡ2) for s ∈ [s1, s̄
∗
3). Hence, any s ∈ [s1, s̄

∗
3) does not maximize

U3(s|Ḡ1, Ḡ2).

Second, given others’ equilibrium strategies, player 3’s expected prize at s̄∗3 equals x3 as in

Definition i). To see why, notice that Lemma 4, the “Stochastic Dominance” property, implies

s̄∗i ≥ s̄∗3 for i = 1, 2. In addition, we must have s̄∗1 = s̄∗2 because of Lemma 1, the property of

“No Aggregate Gaps”. Therefore, u∗i = v1 − cis̄∗1 for i = 1, 2. Substituting them into (16) and

(15), we can verify that

G2
i (s) = Ḡi(s+ s̄∗1 − s̄2

1) (20)

for i = 1, 2. That is, Ḡi is G2
i shifted horizontally by s̄∗1−s̄2

1 for i = 1, 2. Therefore, the maximizer

s̄∗3 = inf arg maxs∈[s1,s̄1] U3(s|Ḡ1, Ḡ2) is the maximizer ŝ3 = inf arg maxs∈[0,s̄21] U3(s|G2
1, G

2
2) with

the same shift. That is,

ŝ3 = s̄∗3 − (s̄∗1 − ŝ1) (21)

Substituting (20) and (21) into the definition x3 = U3(ŝ3|G2
1, G

2
2)+c3ŝ3, we have x3 = U3(s̄∗3|Ḡ1, Ḡ2)+

c3s̄
∗
3. Recall that Ḡi(s) = G∗i (s) for s ≥ s̄∗3, so x3 = U3(s̄∗3|G∗1, G∗2)+c3s̄

∗
3, which is exactly player

3’s expected value of prizes at s̄∗3 given others’ equilibrium strategies. Hence, we prove the
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claim.

Therefore, T = s̄∗3 and w3 = 0. Recall that Lemma 6 implies u∗3 = 0, so u∗3 = max(0, w3).

It remains to be shown that u∗i = max(0, wi) for i = 1, 2. As in the second step above, we can

show that xi = v1G
∗
j (s̄
∗
3) + v2(1−G∗j (s̄∗3))− cis̄∗3 for i, j ∈ {1, 2} and i 6= j. The definition of wi

implies wi = xi − ciT = v1G
∗
j (s̄
∗
3) + v2(1−G∗j (s̄∗3))− cis̄∗3 = u∗i for distinct i, j ∈ {1, 2}.

Having proved Proposition 1, we can use it and Definitions i) to iii) to derive the closed-form

expressions of equilibrium payoffs in Proposition 2.

Proof of Proposition 2. We have shown u∗3 = 0, so it remains to derive the payoffs for 1

and 2. Consider Case II first. Recall that U3(·|G2
1, G

2
2) is maximized at the upper boundary s̄2

1

if (9) does not hold but (10) does. Therefore, Definitions i) to iii) imply xi = v1 for i = 1, 2, 3

and r3 = v1/c3, so u∗i = v1(1− ci/c3) for i = 1, 2.

Consider Case I. Recall that the lower boundary 0 is a maximizer of U3(·|G2
1, G

2
2) over [0, s̄2

1]

if neither (9) nor (10) holds. Therefore, Definitions i) to iii) imply x1 = v1 − (v1 − v2)c1/c2,

x2 = v2 and x3 = v2(1 − c1/c2). In addition, x3 − c3T = 0, so T = v2(1 − c1/c2)/c3. The

definitions also imply u∗i = xi − ciT for i = 1, 2. Substituting x1, x2 and T into this expression,

we obtain the expressions of u∗1 and u∗2 in Case I.

Consider Case III. Recall that (9) implies U3(·|G2
1, G

2
2) has an interior maximizer in [0, s̄2

1].

Rearranging terms, we have

U3(s|G2
1, G

2
2) =

∆1 −∆2

∆2
1

c1c2s
2 +

[
∆1 −∆2

∆1
(c2 − c1) +

∆2

∆1
(c1 + c2)− c3

]
s+ ∆2

(
1− c1

c2

)
which is a quadratic function of s with its maximum being

û3 = ∆2

(
1− c1

c2

)
− c1c2

4
(∆1 −∆2)

[
c2 − c1

c1c2
+
c1 + c2

c1c2

∆2

∆1 −∆2
− ∆1

∆1 −∆2

c3

c1c2

]2

Substituting ∆1 = v1 − v2 and ∆2 = v2 into the above expression, we obtain (11). Proposition

1 implies x3 − c3T = u∗3 = 0, and the definition of x3 implies x3 − c3ŝ3 = û3. Therefore,

T − ŝ3 = û3/c3 (22)

Then, for i = 1, 2, we have u∗i = xi−ciT = u2
i +ciŝ3−ciT = u2

i −û3ci/c3, where the first equality

is from Proposition 1, the second from the definition of xi and the last from (22). Substituting

u2
i = v1−∆1ci/c2 into the above expression of u∗i , we obtain the payoff expressions in Case III.

Proof of Corollary 1. We can verify that the equilibrium payoffs in Proposition 2 are

continuous in ∆1/∆2, so it is sufficient to prove the corollary in each of Case I, II, and III.

Consider Case II first. Using Proposition 2, we can verify that (u∗1−u∗2)/(u∗2−u∗3) is independent

of v, so it is nondecreasing in ∆1/∆2.
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Consider Case I. Substituting the payoff expressions in Proposition 2 into (u∗1−u∗2)/(u∗2−u∗3),

we can rewrite it as

u∗1 − u∗2
u∗2 − u∗3

=

[
∆1

∆2

(
1− c1

c2

)
+ 1− c1

c3

(
1− c1

c2

)]/[
1− c2

c3

(
1− c1

c2

)]
which is strictly increasing in ∆1/∆2.

Consider Case III. In the proof of Proposition 1, we show that in any equilibrium, u∗i =

v1 − cis̄∗1 for i = 1, 2. Then, using the expressions of u∗1, u
∗
2 and u∗3 = 0, we can rewrite

u∗1 − u∗2
u∗2 − u∗3

=
v1/v2 − c1s̄

∗
1/v2

v1/v2 − c2s̄∗1/v2
− 1

Notice that (u∗1−u∗2)/(u∗2−u∗3) being nondecreasing in ∆1/∆2 is equivalent to v1/v2−c1s̄
∗
1/v2−

(v1/v2 − c2s̄
∗
1/v2) = (c2 − c1) s̄∗1/v2 being nondecreasing in ∆1/∆2. Hence, it is sufficient to

show that s̄∗1/v2 is nondecreasing in ∆1/∆2.

Recall that u∗1 = v1−c1s̄
∗
1, so s̄∗1/v2 = (v1−u∗1)/(c3v2). In addition, because of the expression

of u∗1 in Proposition 2 and (11), we can rewrite s̄∗1/v2 as

s̄∗1
v2

=
1

c3

(
1− c1

c2

)
+

∆1

∆2

1

c2
+

1

4c1c2c3

[(c3 − c2 − c1)− (1−∆1/∆2) (c3 + c1 − c2)]2

1−∆1/∆2

Consider the last term. Its denominator is decreasing in ∆1/∆2. Its numerator is increasing in

∆1/∆2 because c3 − c2 − c1 > 0 and c3 + c1 − c2 > 0 in Case III. Therefore, the last term is

increasing in ∆1/∆2, and hence, so is s̄∗1/v2.

Next, we present an algorithm, which is used to prove Propositions 3 to 6. Using the

equilibrium payoffs derived in Proposition 2, the algorithm below constructs a strategy profile

G = (G1, G2, G3).

Algorithm:

Step 1. Define G at the lowest performance s = 0: G1(0) = G2(0) = 0, G3(0) = u∗2/v2.

Step 2. This step examines G(0) to determine A+(0), the set of players whose strategies are

increasing at performance s = 0. This step contains two parts:

Part One. Define a set of candidates CP(s) = {i ∈ {1, 2, 3} such that Ui(s|Gj , Gk) = u∗i

for distinct i, j, k ∈ {1, 2, 3}}.
Part Two. This part refines the candidate set to A+(s): Consider an equation system

0 K3(s) K2(s)

K3(s) 0 K1(s)

K2(s) K1(s) 0



g1(s)

g2(s)

g3(s)

 =


c1

c2

c3

 (23)

where Ki(s) = (∆1−∆2)Gi(s) + ∆2 for i = 1, 2, 3. If the solution g3(s) > 0,

let A+(s) = CP(s); otherwise A+(s) = CP(s)\{3}.
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Step 3. Given G(0) and A+(0) defined above, this step extends the definition of G to per-

formance higher than s = 0. Specifically, for i ∈ A+(s) and t slightly higher than s,

consider the equation system Ui(t|Gj , Gk) = u∗i for j, k ∈ A+(s)\{i}. We can solve

Gi(t) ∈ [0, 1] for i ∈ A+(s) from the system.25 If i /∈ A+(s), let Gi(t) = Gi(s). In this

way, we can extend G to performance above s until we reach a switch point s′.

Step 4. This step determines the switch point and extends the definition of G above the switch

point. The switch point s′ is the lowest performance above s for which A+(s) 6= A+(s′).

This happens for two reasons. The first reason is a player outside of A+(s) enters the

set at s′ according to Step 2. The second reason is a player in A+(s) exits the set at

s′ according to Step 2. Then, given G(s′) and A+(s′), continue extending G to higher

performance as in Step 3 until another switch point is reached. In this way, we can

extend the definition of G to higher performance until s = (v1 − u∗1)/c1 is reached.26

The above algorithm is simpler than that of Siegel (2010), which is due to the constant

marginal costs. The main difference from his algorithm is Part Two of Step 2. In contrast to

Siegel’s algorithm, Part Two in our algorithm does not use a fixed point argument. Specifically,

suppose CP(s) = {1, 2, 3} from Part One. Then, the definition of CP(s) implies Ui(s|Gj , Gk) =

u∗i for j, k ∈ {1, 2, 3}\{i}. If all candidates’ strategies in an equilibrium are indeed increasing

at s, the above equation remains true for bids slightly above s. Differentiating both sides of

the equation with respect to s, we obtain Kj(s)gk(s) + Kk(s)gj(s) = ci, where gi(s) is the

derivative of Gi.
27 The matrix form of these equations is (23) in Part Two. Therefore, if all

candidates’ strategies are indeed increasing at s in an equilibrium, (23) must have positive

solutions gi(s) > 0 for i = 1, 2, 3. If g3(s) ≤ 0, then at least one candidate’s strategy is not

increasing at s. It turns out this candidate must be player 3, who has the highest marginal cost.

So far we explain Part Two in the case of CP(s) = {1, 2, 3} and g3(s) ≤ 0, and this case turns

out to be the only case in which CP(s) is different from A+(s).28

Proof of Proposition 3. We first use the algorithm to derive a set of strategies, then show

that it is the unique equilibrium. Following the algorithm, A+(0) = {2, 3}, then we can extend

G2, G3 by solving v2Gi(s)− cjs = u∗j for i, j ∈ {2, 3} and j 6= i. Notice that (9) and (10) imply

that u∗2, u
∗
3 are as in Case I in Proposition 2. Substituting the payoffs into the two equations

above, we have

G2(s) = sc3/v2

G3(s) = sc2/v2 + (c3 − c2 + c1)/c3

for s ∈ [0, s′] where s′ = (c2− c1)v2/(c2c3) solves G3(s′) = 1. We can verify that the first switch

25In the proofs of Propositions 3-6, we solve the equation system in four different cases, and show that it has
a unique solution.

26According to the proofs of Propositions 3-6, there are at most two switch points above 0.
27The derivatives exist because of the implicit function theorem.
28This is because of the “Nested Gaps” property in Lemma 3.
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point above 0 is s′, and A+(s′) = {1, 2}, so we can extend G1, G2 by solving

v1G2(s) + v2(1−G2(s))− c1s = u∗1 (24)

v1G1(s) + v2(1−G1(s))− c2s = u∗2 (25)

Substituting expressions of u∗1 and u∗2 in Case I, we can solve the above equations and get

G2(s) =
c1

∆1
s+ 1− c1

c2
− c1

c3

(
1− c1

c2

)
∆2

∆1

G1(s) =
c2

∆1
s− ∆2

∆1

c2 − c1

c3

for s ∈ [s′, s′′] where s′′ = ∆1/c2 + ∆2(c2 − c1)/(c2c3) solves G1(s′′) = 1.

It is straightforward to verify that (G1, G2, G3) is indeed an equilibrium, and we show

below that there are no other equilibria. First, in any equilibrium, G∗i for i = 2, 3 must

satisfy v2Gi(s) − cjs = u∗j for j ∈ {2, 3}\{i} and s ∈ [0, s∗1], where s∗1 is the lower boundary

of G∗i ’s support. Therefore, G∗i (s) = Gi(s) for i = 2, 3 and for s ∈ [0, s∗1]. At s∗1, we have

U1(s∗1|G∗2, G∗3) = u∗1. The definition of switch point s′ implies that it is the lowest bid satisfying

this property, so s∗1 = s′. Notice that G∗3(s′) = 1, so s∗1 = s̄∗3 = s′. Hence, G∗i for i = 1, 2

satisfies (24) and (25) for s > s′. Therefore, G∗i (s) = Gi(s) for i = 1, 2 and for s ∈ [s′, s′′]. As

above, from the equilibrium payoffs, we uniquely determine the strategies in any equilibrium.

Therefore, there are no other equilibria.

Proof of Proposition 4. As in Proposition 3, we first use the algorithm to construct a set

of strategies. With A+(0) = {2, 3}, we can extend G2 and G3 by solving v2Gi(s)− cjs = u∗j for

i, j ∈ {2, 3} and j 6= i. That is, G2(s) = sc3/v2 and G3(s) = sc2/v2 + (1− c2/c3) v1/v2.

Denote the next switch point as s′. By its definition, s′ is the smallest bid such that

U1(s|G2, G3) = u∗1. Therefore, we can extend G1, G2, G3 by solving Ui(s|Gj , Gk) = u∗i for

i = 1, 2, 3. If ∆1/∆2 = 1, we can solve the linear equation system and obtain Gi(s) =
∑

j 6=i(u
∗
j+

cjs)/(2v2) for i = 1, 2, 3. If ∆1/∆2 6= 1, we can use the definition of Ai to rewrite Ui(s|Gj , Gk) =

u∗i as (
Gj(s) +

∆2

∆1 −∆2

)(
Gk(s) +

∆2

∆1 −∆2

)
=
Ai + cis

∆1 −∆2
(26)

The product of (26) for i = 1, 2, 3 is

[
×3
i=1

(
Gi(s) +

∆2

∆1 −∆2

)]2

= ×3
i=1

(
Ai + cis

∆1 −∆2

)
therefore

×3
i=1

(
Gi(s) +

∆2

∆1 −∆2

)
= ±

√
×3
i=1

(
Ai + cis

∆1 −∆2

)
(27)
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Combining (26) and (27), we obtain

Gi(s) = ±∆1 −∆2

Ai + cis

√
×3
i=1

(
Ai + cis

∆1 −∆2

)
− ∆2

∆1 −∆2

On the one hand, if ∆1 −∆2 > 0, we can verify that A1 + c1s > A2 + c2s > A3 + c3s > 0 for

s ∈ (0, v1/c3), so

Gi(s) =
1

Ai + cis

√
×3
i=1(Ai + cis)

∆1 −∆2
− ∆2

∆1 −∆2
(28)

otherwise Gi(s) < 0. Notice that Ai + cis and ∆1 −∆2 are both positive, so the square root in

(28) is a real number. Therefore, Fi(s), which is the right hand side of (28), is also a real number.

On the other hand, if ∆1 −∆2 < 0, we can verify that A3 + c3s < A2 + c2s < A1 + c1s < 0 for

s ∈ (0, v1/c3). Moreover, the second term in (28) satisfies −∆2/(∆1 −∆2) > 1. Then, (28) is

also true, otherwise Gi(s) > 1. Notice that Ai + cis and ∆1 −∆2 are negative, so the square

root in (28) is a real number, so is Fi(s). Hence, the strategies in Proposition 4 are the unique

outcome of the algorithm.

Let us verify that Gi is nondecreasing for i = 1, 2, 3. By the construction in the algorithm, Gi

is also continuous. It is straightforward to verify that the linear parts of Gi are nondecreasing.

Therefore, it remains to verify that Gi is nondecreasing over s ∈ (s∗1, v1/c3). First, consider

the case with ∆1 −∆2 > 0. Recall that in this case, A1 + c1s > A2 + c2s > A3 + c3s > 0 for

s ∈ (0, v1/c3), so

G3(s) =

√
(A1 + c1s)(A2 + c2s)

(A3 + c3s)(∆1 −∆2)
− ∆2

∆1 −∆2

When ∆1 − ∆2 > 0, G3(s) is a monotone transformation of (A1 + c1s)(A2 + c2s)/(A3 + c3s).

Therefore, (14) implies the right derivative G′3(s∗1) ≥ 0.29 In addition,

∂

∂s

[
(A1 + c1s)(A2 + c2s)

A3 + c3s

]
=
c1c2c3(s2 + 2A3

c3
s) + c1A2A3 +A1c2A3 −A1A2c3

(A3 + c3s)2
(29)

where the denominator is positive and the numerator is increasing in s. The positive denomi-

nator implies that G′3(s) and the numerator have the same sign. Recall that the numerator is

increasing in s and it is nonnegative at s∗1 due to (14), so it is positive for s > s∗1. Therefore,

G′3(s) > 0 for s > s∗1. Moreover, (23) can be rewritten as

((v1 − 2v2)G3(s) + v2)g2(s) + ((v1 − 2v2)G2(s) + v2)g3(s) = c1 (30)

((v1 − 2v2)G3(s) + v2)g1(s) + ((v1 − 2v2)G1(s) + v2)g3(s) = c2 (31)

((v1 − 2v2)G2(s) + v2)g1(s) + ((v1 − 2v2)G1(s) + v2)g2(s) = c3 (32)

Recall that A1 + c1s > A2 + c2s > A3 + c3s > 0 for s ∈ (0, v1/c3) if ∆1 −∆2 > 0. Therefore,

(28) implies G1(s) < G2(s) < G3(s) for s ∈ (0, v1/c3). Comparing (30) and (31), we obtain

29We use the right derivative because, for s < s∗1, the expression of G3(s) is different.
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g2(s) < g1(s). Similar, comparing (31) and (32), we obtain g3(s) < g2(s). Therefore, 0 <

G′3(s) < G′2(s) < G′1(s).

We have verified that Gi is nondecreasing if ∆1 −∆2 > 0. Next, we consider the case with

∆1 −∆2 < 0. As above, we have G′3(s) < G′2(s) < G′1(s), so it remains to show G′3(s) > 0 for

s ∈ (s∗1, v1/c3). Recall that, if ∆1 −∆2 < 0, we have A3 + c3s < A2 + c2s < A1 + c1s < 0 for

s ∈ (0, v1/c3), so

G3(s) = −

√
(A1 + c1s)(A2 + c2s)

(A3 + c3s)(∆1 −∆2)
− ∆2

∆1 −∆2

Using the same argument in the case of ∆1 −∆2 > 0, we obtain that G′3(s) and the numerator

in (29) also have the same sign for s ∈ (s∗1, v1/c3). Notice that the numerator is a quadratic

function that reaches its minimum at s = −A3/c3 = (∆2)2/((∆2 − ∆1)c3) > v1/c3, so it is

decreasing in s for s ∈ (s∗1, v1/c3). Notice that Gi(v1/c3) = 1, so (30)-(32) imply the left

derivative G′3(v1/c3) = (c1 + c2 − c3)/(2∆1) ≥ 0, where the inequality is from the assumption

c1 + c2 ≥ c3 of the proposition. As a result, the numerator in (29) is nonnegative at s = v1/c3,

so it is positive over for s ∈ (s∗1, v1/c3) because it is decreasing in s. Hence, (29) is positive and

G3 is increasing.

Now we verify that the constructed strategies are a unique equilibrium. As in Proposition

3, G∗i (s) = Gi(s) for s ≤ s′. We show Gi(s) = G∗i (s) for i = 1, 2, 3 and for s > s′ in two steps.

First, s∗1 = s′. As in Proposition 3, the definition of s′ implies that s∗1 ≥ s′. Suppose

s∗1 > s′, then G∗2(s), G∗3(s) satisfy v2G
∗
2(s) − c3s = u∗3 and v2G

∗
3(s) − c2s = u∗2 for s ∈ (s′, s′′).

Following the same argument in the proof of Lemma 7, we can verify that G∗2(s) > G2(s) and

G∗3(s) > G3(s) for s ∈ (s′, s′′). Therefore, U1(s|G∗2, G∗3) > U1(s|G2, G3) = u∗1 for s ∈ (s′, s′′),

where the equality is from the definition of G2, G3. Hence, s∗1 = s′.

Second, any s ∈ [s′, s′′] is in the support of G∗i for i = 1, 2, 3. Suppose otherwise that

there exists ε > 0 and s3 ∈ [s′, s′′] such that (s3, s3 + ε) is not a subset of G∗i ’s support.

Then, Lemma 3, the property of “Nested Gaps”, implies that G∗i must be G∗3. Without loss of

generality, assume s3 is the smallest bid with the above property. Then, G∗3(s) = G∗3(s3) for

s ∈ [s3, s3 + ε]. Moreover, G3(s) > G∗3(s) because G3 is increasing and G3(s3) = G∗3(s). Then,

as in the proof of Lemma 7, we have Gi(s) < G∗i (s) for i = 1, 2 and s ∈ [s3, s3 + ε]. Therefore,

U3(s|G∗1, G∗2) > U3(s|G1, G2) = u∗3 for s ∈ [s3, s3 + ε]. This is a contradiction.

In these two steps, we verify that G∗i and Gi have the same support for i = 1, 2, 3. Moreover,

the construction above shows that, given the equilibrium payoffs, Gi is the unique strategy with

such support. Hence, there are no other equilibria.

Proof of Proposition 5. The algorithm implies that there are two switch points between

0 and (v1 − u∗1)/c1, where the algorithm ends. Moreover, they satisfy s′ < s′′, and A+(s′) =

{1, 2, 3} and A+(s′′) = {1, 2}. Following the calculations in the proof of Proposition 4, we can

construct the strategies in this proposition.

Let us verify that the constructed Gi are indeed non-decreasing. We first verify that the

left derivative G′3(s̄∗3) = 0. Notice that this proposition corresponds to Case III in Proposition
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2, so U3(·|G2
1, G

2
2) has an interior maximizer over [0, s̄2

1]. In addition, according to the proof

of Proposition 1, U3(·|G2
1, G

2
2) is U3(·|Ḡ1, Ḡ2) with a horizontal shift. Therefore, U3(·|Ḡ1, Ḡ2)

also has an interior maximizer over [s1, s̄1], and the maximizer is s̄∗3. The corresponding first

order condition is (32) with s = s̄∗3, which, according to the proof of Proposition 1, equals to

the threshold T . We can also verify that g1(s̄∗3) = c2/∆1, g2(s̄∗3) = c1/∆1 and g3(s̄∗3) = 0 solve

(30)-(32), so the left derivative G′3(s̄∗3) = g3(s̄∗3) = 0.

Second, G3 is nondecreasing over (s∗1, s̄
∗
3). Recall that for s ∈ (s∗1, s̄

∗
3), G′3(s) and the nu-

merator in (29) have the same sign. Notice that G3(s̄∗3) = 1, so G3(s) < 1 implies G′3(s) ≥ 0

for s slightly below s̄∗3. Therefore, the numerator is also nonnegative at s slightly below s̄∗3. In

addition, the numerator is zero at s = s̄∗3 due to the first step. Therefore, the numerator, which

is a U-shaped quadratic function of s, is positive for s < s̄∗3. Hence, G′3(s) > 0 for s ∈ (s∗1, s̄
∗
3).

As in the proof of Proposition 4, G′1(s) > G′2(s) > G′3(s) for s ∈ (s∗1, s̄
∗
3), so Gi is increasing

over (s∗1, s̄
∗
3). The other parts of the strategies are linear, and are also non-decreasing.

By the two steps in the proof of Proposition 4, we can prove the constructed strategies are

a unique equilibrium.

Proof of Proposition 6. The algorithm implies that there are two switch points between

0 and (v1 − u∗1)/c1. Moreover, s′ < s′′, and A+(s′) = {1, 2} and A+(s′′) = {1, 2, 3}. As in the

proof of Proposition 4, we have G∗i (s) = Gi(s) for s ≤ s′. At the first switch point s′, we have

g3(s′) < 0, so at least one of G∗1, G
∗
2, G

∗
3’s supports does not contain (s′, s′ + ε) for some ε > 0.

Then, the property of “Nested Gaps” in Lemma 3 implies that (s′, s′ + ε) is not a subset of

G∗3’s support. By the definition of the second switch point s′′, (s′, s′′) cannot be in the support

of G∗3. By the same argument for [s′, s′′] in Proposition 4, we have [s′′, (v1 − u∗1)/c1] is in the

support of G∗i for i = 1, 2, 3.

Let us verify that Gi is nondecreasing. As above, it is sufficient to verify that G3 is nonde-

creasing for its nonlinear part over (ŝ3, s̄
∗
1). As in the proof of Proposition 4, ∆1−∆2 > 0 implies

that the numerator in (29) is increasing over (0, s̄∗1). Because F ′3(s) has the same sign as the nu-

merator, so F3(s) is a U-shaped function over (0, s̄∗1). By their definitions, Fi(s
∗
1) for i = 1, 2, 3

are the unique solution in [0, 1]3 to the system U1(s∗1|F2, F3) = u∗1, U2(s∗1|F1, F3) = u∗2 and

U3(s∗1|F1, F2) = u∗3. In addition, U1(s∗1|G2, G3) = u∗1, U2(s∗1|G1, G3) = u∗2 and U3(s∗1|G1, G2) =

u∗3. Therefore, Gi(s
∗
1) = Fi(s

∗
1). The construction of G3 implies G3(s∗1) = G3(ŝ3) = F3(ŝ3), so

F3(s∗1) = F3(ŝ3). Hence, the U-shaped function F3 is increasing over (ŝ3, s̄
∗
1).

The first paragraph shows that we uniquely determine the supports of strategies in any

equilibrium. Therefore, the construction implies that given the equilibrium payoffs, there are

no other strategies with the same supports. Hence, there are no other equilibria.

We first introduce a lemma below, then use it to prove Proposition 7.

Lemma 8 If 1 < ∆1/∆2 < c1/(c3− c2) and c3 < c1 + c2, there exists a unique λ ∈ (1, c1/(c3−
c2)) such that F ′3(s∗1) > 0 if and only if ∆1/∆2 ∈ (1, λ).
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Proof. We prove this in three steps. First, s∗1/v1 increases in κ, where κ ≡ 1/((∆1/∆2)2 − 1).

To see why, recall that s∗1 solves G∗1(s∗1) = 0. That is,

1

c1s∗1 +A1

√
×3
i=1 (cis

∗
1 +Ai)

∆1 −∆2
− ∆2

∆1 −∆2
= 0

Because ∆1−∆2 > 0, we can rewrite it as (c2s
∗
1 +A2) (c3s

∗
1 +A3) /(c1s

∗
1 +A1) = ∆2

2/(∆1−∆2),

or

c2c3s
∗2
1 +

(
A2c3 + c2A3 −

∆2
2

∆1 −∆2
c1

)
s∗1 +A2A3 −

∆2
2

∆1 −∆2
A1 = 0 (33)

Recall that Ai = v1 (1− ci/c3) + ∆2
2/(∆1 −∆2), so

Ai
v1

= 1− ci
c3

+
∆2

2

(∆1 −∆2)(∆1 + ∆2)
= 1− ci

c3
+

1

t2 − 1
(34)

∆2
2

(∆1 −∆2)v1
=

1

t2 − 1
(35)

where t ≡ ∆1/∆2. Dividing both sides of (33) by v2
1 and using (34) and (35), we can rewrite

(33) as

c2c3

(
s∗1
v1

)2

+ [c3 − c2 + κ(c3 + c2 − c1)]
s∗1
v1
− κc2 − c1

c3
= 0 (36)

where κ = 1/(t2 − 1). Because the last term is negative, the above equation has two roots of

different signs. Therefore, the positive root is

s∗1
v1

= −c3 − c2 + κ (c3 + c2 − c1)

c2c3

+

√
(c3 − c2 + κ (c3 + c2 − c1))2 + 4c2(c2 − c1)κ

c2c3
(37)

Recall that F3(s) = 1
A3+c3s

√
×3

i=1(cis+Ai)
∆1−∆2

− ∆2
∆1−∆2

. Because ∆1 − ∆2 > 0, F ′3(s∗1) > 0 is

equivalent to (14). Expanding the derivative in (14), we obtain

c1(A2 + c2s
∗
1)(A3 + c3s

∗
1) + (A1 + c1s

∗
1)c2(A3 + c3s

∗
1)− (A1 + c1s

∗
1)(A2 + c2s

∗
1)c3 > 0

Dividing both sides by c1c2c3s
∗
1, we obtain(

A2

s∗1c2
+ 1

)(
A3

s∗1c3
+ 1

)
+

(
A1

s∗1c1
+ 1

)(
A3

s∗1c3
+ 1

)
−
(
A1

s∗1c1
+ 1

)(
A2

s∗1c2
+ 1

)
> 0

Notice that Ai
s∗1ci

= 1−ci/c3+κ
ci

1
s∗1/v1

, so the inequality above is

(
1− c2/c3 + κ

c2
+
s∗1
v1

)(
1− c3/c3 + κ

c3
+
s∗1
v1

)
+

(
1− c1/c3 + κ

c1
+
s∗1
v1

)(
1− c3/c3 + κ

c3
+
s∗1
v1

)
−
(

1− c1/c3 + κ

c1
+
s∗1
v1

)(
1− c2/c3 + κ

c2
+
s∗1
v1

)
> 0
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Collecting terms with respect to s∗1/v1, we get the left-hand side of the above inequality

LHS =

(
s∗1
v1

)2

+ 4
κ

c3

s∗1
v1

+
1− c1/c3 + κ

c1
+

1− c2/c3 + κ

c2
+

1− c3/c3 + κ

c3
(38)

Recall that s∗1/v1 solves (36), which can be rewritten as

c2c3

(
s∗1
v1

+
c3 − c2 + κ(c3 + c2 − c1)

2c1c2

)2

−

[(
c3 − c2 + κ(c3 + c2 − c1)

2c1c2

)2

+ κ
c2 − c1

c3

]
= 0

If κ increases, c3−c2+κ(c3+c2−c1)
2c1c2

increases and the last term decreases. Then, the quadratic

function of s∗1/v1 shifts to the right and downwards. This implies that the larger root s∗1/v1

increases.

Second, LHS in (38) is increasing in κ for κ ∈ [κ,+∞) if it is increasing at κ, where

κ =
1

t2 − 1

∣∣∣∣
t=c1/(c3−c2)

=
(c3 − c2)2

(c1 + c2 − c3)(c1 + c3 − c2)

The first step implies that s∗1/v1 increases in κ, so the first two terms in (38) increase in κ.

However, the last three terms do not. To see why, the derivative of the last three terms with

respect to κ is

2κ
c1 + c2 − c3

c1c2c3
− 2(c3 − c2)(c3 − c1)

c1c2c2
3

which is increasing in κ. However, the derivative at κ = κ is

− 2c1(c2 − c1)(c3 − c2)

c1c2c2
3(c1 + c3 − c2)

< 0 (39)

Therefore, the sum of the last three terms is a U-shaped quadratic function of κ. Hence, to

show (38) is increasing in κ, it is sufficient to show it is increasing in κ at κ.

Third, LHS in (38) is increasing in κ at κ. Substituting (39) into the derivative of (38) with

respect to κ at κ, we have

∂LHS

∂κ

∣∣∣∣
κ

=

(
2y +

4

c3
κ

)
∂y

∂κ

∣∣∣∣
κ

+
4

c3
y − 2c1(c2 − c1)(c3 − c2)

c1c2c2
3(c1 + c3 − c2)

(40)

where y ≡ s∗1/v1. Recall that if κ increases, the quadratic function in (36) shifts to the right and

downwards. Therefore, the larger root y of the equation shifts to the right by at least c3+c2−c1
2c2c3

.

That is, ∂y
∂κ

∣∣∣
κ
≥ c3+c2−c1

2c2c3
. Substituting κ into (37), we get

y(κ) =
(c2 − c1)(c3 − c2)

c2c3(c3 − c2 + c1)

Substituting y(κ), κ and the lower bound of ∂y(κ)/∂κ into (40), then multiplying both sides by
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c2c
2
3/2, we get

∂LHS

∂κ

∣∣∣∣
κ

c2c
2
3

2
=

(
c3 + c2 − c1

2c2
+ 1

)
(c2 − c1)(c3 − c2)

c1 + c3 − c2
+

2
∑3

i=1(c1 + c2 + c3 − 2ci)

(c3 − c2)2
> 0

Therefore, (38) is increasing in κ. Hence, there exists λ such that the lemma holds.

Proof of Proposition 7. Consider c3 > c1 + c2 first. Then, c1/(c3 − c2) < 1 and 2c1/(c3 −
c2 + c1) < 1. Therefore, Proposition 3 implies that the equilibrium is of Case I for ∆1/∆2 ≥
2c1/(c3− c2 + c1). If ∆1/∆2 ∈ (0, 2c1/(c3− c2 + c1)), Proposition 4 implies that the equilibrium

is of Case III. If ∆1/∆2 = 0, v1 = v2 > 0, so the equilibrium is of Case IIa.

Consider c3 ≤ c1 + c2. First, Proposition 4 implies that the equilibrium is of Case IIa for

∆1/∆2 ≤ 1. Second, Proposition 3 implies that the equilibrium is of Case I for ∆1/∆2 ≥ c1/(c3−
c2). Third, according to Proposition 4, the equilibrium is of Case IIa if 1 < ∆1/∆2 < c1/(c3−c2)

and if F ′3(s∗1) ≥ 0. Lemma 8 implies that the equilibrium is of Case IIa for ∆1/∆2 ∈ (1, λ].

Then, the first step implies that the equilibrium is of Case IIa for ∆1/∆2 ≤ λ. Fourth, if

∆1/∆2 ∈ (λ, c1/(c3 − c2)), Lemma 8 implies that 1 < ∆1/∆2 < c1/(c3 − c2) and F ′3(s∗1) < 0.

Then, Proposition 6 implies that the equilibrium is of Case IIb.

Proof of Proposition 8. Lemma 2 implies that players 4, ..., n choose s = 0 with probability

1. In addition, Lemma 5 implies that they do not win any prize in any equilibrium. Therefore,

their equilibrium payoffs are zero.

Next, consider players 1,2 and 3. Because players 4, ..., n do not choose positive bids and do

not win any prize, players 1, 2, 3’s strategies in every equilibrium in the n-player contest are also

an equilibrium in the three-player contest. Then, the unique equilibrium of the three-player

contest implies that the n-player contest has a unique equilibrium, in which players 1, 2, 3 use

the same strategies as in the three-player contest. Moreover, their payoffs in the n-player contest

are also the same as those in the three-player contest.

Calculation Details in Example 1 Substituting the values of ci and vk into (1) and (2), we

obtain G2
1(s) = 4s and G2

2(s) = 3/4 + s. Suppose players 1 and 2 use these strategies, player 3’s

payoff by choosing s is given by (3) and can be rewritten as U3(s|G2
1, G

2
2) = −8s2+2s+9/4, which

is maximized by a unique best response ŝ3 = 1/8, and the corresponding payoff is û3 = 19/8.

Then, substituting ŝ3 = 1/8 into (7) and (8), we have x1 = 31/8 and x2 = 7/2. Substituting

ŝ3 = 1/8 and û3 = 19/8 into (6), we obtain x3 = 13/4. Following Definition ii), the threshold T

satisfies x3−c3T = 0, so T = 13/28. According to Definition iii), player i’s power is wi = xi−ciT ,

so w1 = 191/56, w2 = 23/14 and w3 = 0. Then, Proposition 1 implies u∗i = xi, so u∗1 = 191/56,

u∗2 = 23/14 and u∗3 = 0. Recall that s∗1 is the smallest s ≥ 0 satisfying (12). Substituting the

values of u∗i , vk, ci into (12), we can rewrite it as −2
(

7s
3

23/14+4s
3

)
+ 3

(
7s
3 + 23/14+4s

3

)
− s =

191
56 , whose solutions are (67 ± 5

√
37)/112. Therefore, s∗1 = (67 − 5

√
37)/112. According to

Proposition 5, s̄∗1 = (v1 − u∗1)/c1 = 33/56 and s̄∗3 = T = 13/28. Therefore, the supports are

[0, 13/28] for player 3, [0, 33/56] for player 2, and [(67− 5
√

37)/112, 33/56] for player 1.
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